Chem. Ber. 108, 1246-1258 (1975)

σ-Donator- und π-Acceptoreigenschaften der Phosphinliganden in Komplexen des Typs cis-Mo(CO)₄(R_{3-n}PX_n)₂

Othmar Stelzer* und Eugen Unger

Lehrstuhl B für Anorganische Chemie der Technischen Universität Braunschweig, D-3300 Braunschweig, Pockelsstr. 4

Eingegangen am 1. Oktober 1974

Die aus den UV-Photoelektronenspektren zu entnehmenden Ionisierungspotentiale der "freien Elektronenpaare" am Phosphor werden als ein relatives Maß für die σ -Donatorfähigkeit der Phosphinliganden L (R_{3-n}PX_n, R = Me, tBu; X = H, Cl, F; n = 0-3, und (Me₂N)_{3-n}PX_n, X = F, Cl, n = 0, 1, 2) vorgeschlagen. Unter Verwendung der sich damit ergebenden Reihenfolge konnten durch Vergleich von CO-Valenzschwingungsfrequenzen und -kraftkonstanten innerhalb der Komplexreihe *cis*-Mo(CO)₄L₂ die Liganden hinsichtlich ihrer π -Acceptoreigenschaften klassifiziert werden. Zehn Komplexe *cis*-Mo(CO)₄(R_{3-n}PX_n)₂ (R = Me, tBu; X = H, F, Cl; n = 1, 2) wurden erstmals synthetisiert und charakterisiert.

 $\sigma\text{-Donor}$ and $\pi\text{-Acceptor}$ Properties of the Phosphine Ligands in Complexes of the Type cis-Mo(CO)4(R_{3-n}PX_n)₂

The first vertical ionisation potentials obtained from the u. v. photoelectron spectra are proposed to give a relative measure for the σ -donor ability of a series of phosphine ligands L (R_{3-n}PX_n, R = Me, tBu; X = H, F, Cl; n = 0-3, and (Me₂N)_{3-n}PX_n, X = F, Cl, n = 0, 1, 2). Using this scale the ligands L could be classified according to their π -bonding ability by comparison of the CO-stretching frequencies and force constants within the series of complexes *cis*-Mo(CO)₄L₂. Ten complexes *cis*-Mo(CO)₄(R_{3-n}PX_n)₂ (R = Me, tBu; X = H, F, Cl; n = 1, 2) have been prepared and characterized for the first time.

Die Natur der Übergangsmetall-Phosphor-Bindung ist seit der Synthese der ersten Koordinationsverbindungen mit Phosphinliganden Gegenstand zahlreicher Arbeiten gewesen^{1, 2)}. Experimentelle Ergebnisse verschiedenartiger physikalisch-chemischer Untersuchungsmethoden wurden als Beweis für³⁾ oder gegen⁴⁾ π -Bindungsanteile bei kon-

A. W. Hofmann, Liebigs Ann. Chem. 103, 375 (1857); P. Schutzenberger, C. R. Acad. Sci. Ser. C 70, 1414 (1870); G. Wilkinson, Nature (London) 168, 514 (1951); J. Amer. Chem. Soc. 73, 5501 (1951).

²⁾ J. Chatt und A. A. Williams, J. Chem. Soc. 1951, 3061; L. D. Pettit, Quart. Rev. 25, 1 (1971); J. G. Verkade, Coord. Chem. Rev. 9, 1 (1972); A. Pidcock in Transition Metal Complexes of Phosphorus, Arsenic and Antimony Ligands, Herausg. C. A. McAuliffe, S. 1, Macmillan Press Ltd., London, Basingstoke 1973.

³⁾ J. Chatt und R. G. Wilkins, J. Chem. Soc. 1952, 273; 1956, 525; J. Chatt, L. A. Duncanson und L. M. Venanzi, ebenda 1955, 4461; H. J. Plastas, J. M. Stewart und S. O. Grim, J. Amer. Chem. Soc. 91, 4326 (1969); I. H. Hillier, V. R. Saunders, J. M. Ware, P. J. Bassett, D. R. Lloyd und N. Lynaugh, J. C. S. Chem. Commun. 1970, 1316; J. C. Green, D. I. King und J. D. H. Eland, ebenda 1970, 1121; F. A. Cotton und C. S. Kraihanzel, J. Amer. Chem. Soc. 84, 4432 (1962).

⁴⁾ J. F. Nixon und A. Pidcock, Annu. Rev. N. M. R. Spectrosc. 2, 345 (1969); M. Bigorgne, J. Inorg. Nucl. Chem. 26, 107 (1964).

stanter oder variabler σ -Bindungsstärke aufgeführt. Graham⁵ schlug ein auf der Verwendung von CO-Valenzschwingungskraftkonstanten für Komplexe M(CO)₅L beruhendes Verfahren zur Separierung von σ - und π -Bindungseffekten vor. Dieser indirekten Interpretation eines Meßergebnisses durch zwei Variable $\Delta \pi$ und $\Delta \sigma$ (bzw. Δd) steht das Verfahren von Angelici und Malone⁶ gegenüber, mit Hilfe der experimentell bestimmbaren Basizität (pK_B-Werte) der Liganden L σ -Bindungseffekte in der Metall-Phosphor-Bindung abzustufen. Die experimentellen Bedingungen bei der Ermittlung der pK_B-Werte⁷ schließen a priori eine Reihe interessanter Phosphinliganden (z. B. PF₃, PCl₃, P(OR)₃ etc.) für die Untersuchung dieser Zusammenhänge aus. Die anstelle der pK_B-Werte verwendete Information über die Basizität der Liganden R_{3-n}PX_n sollte daher mit Hilfe einer möglichst universell anwendbaren Meßmethode zu erhalten sein.

UV-HeI-Photoelektronenspektren

Die Aufnahme der UV-HeI-Photoelektronenspektren unterliegt bezüglich der physikalischen und chemischen Eigenschaften der zu untersuchenden Verbindungen nur geringen Einschränkungen (z. B. zu geringe Flüchtigkeit). Über die Aufnahme und Interpretation der HeI-Photoelektronenspektren der Liganden $R_{3-n}PX_n$ (R = Me, tBu; X = H, F, Cl; n = 0, 1, 2) und ($Me_2N_{3-n}PX_n$ (X = F, Cl; n = 1, 2) wird an anderer Stelle berichtet werden⁸⁾. Das höchste besetzte Orbital (HOMO) stellt im allgemeinen (mit Ausnahme der Verbindungen ($Me_2N_{3-n}PX_n$; n = 0, 1, 2) das Donatororbital dar⁹⁻¹²⁾. CNDO/ 2-Berechnungen der Änderung der elektronischen Gesamtenergie ΔE bei Protonierung des P^{III} ergaben einen linearen Zusammenhang zwischen ΔE und den ersten vertikalen Ionisierungspotentialen der Liganden $R_{3-n}PX_n^{13}$.

Aufgrund der vorstehenden Ergebnisse kann folgende Arbeitshypothese aufgestellt werden: Unter der Voraussetzung der Gültigkeit von Koopmans' Theorem^{14, 15} (oder konstanter Abweichungen) lassen sich die ersten vertikalen Ionisierungspotentiale als ein Maß für die σ -Donatorfähigkeit oder Basizität der hier untersuchten Liganden $R_{3-n}PX_n$ verwenden.

Auf der Basis dieser Arbeitshypothese sollte die infrarotspektroskopische Untersuchung der Komplexe cis-Mo(CO)₄($R_{3-n}PX_n$)₂ Aufschluß über Ausmaß und Bedeutung von π -Bindungseffekten in der Molybdän-Phosphor-Bindung liefern.

80

⁵⁾ W. A. G. Graham, Inorg. Chem. 7, 315 (1968).

⁶⁾ R. J. Angelici und Sr. M. D. Malone, Inorg. Chem. 6, 1731 (1967).

⁷⁾ W. A. Henderson und C. A. Streuli, J. Amer. Chem. Soc. 82, 5791 (1960); C. A. Streuli, Anal. Chem. 32, 985 (1960).

⁸⁾ M. F. Lappert, B. Pedley, B. T. Wilkins, O. Stelzer und E. Unger, Veröffentlichung in Vorbereitung.

⁹⁾ S. Elbel, H. Bergmann und W. Enßlin, J. C. S. Faraday II 1974, 555.

¹⁰⁾ I. H. Hillier und V. R. Saunders, Trans. Faraday Soc. 66, 2401 (1970).

¹¹⁾ I. H. Hillier und V. R. Saunders, J. Chem. Soc. D 1970, 1510.

¹²⁾ P. J. Bassett, D. R. Lloyd, I. H. Hillier und V. R. Saunders, Chem. Phys. Lett. 6, 253 (1970).

¹³⁾ M. Graffeuil, J. F. Labarre und C. Leibovici, Privatmitteil.

 ¹⁴⁾ D. W. Turner, C. Baker, A. D. Baker und C. R. Brundle, Molecular Photoelectron Spectroscopy, S. 6, Wiley Interscience, London 1970.

¹⁵⁾ T. Koopmans, Physica (Utrecht) 1, 104 (1933).

Darstellung der Komplexe 4, 8, 8a, 10, 11, 12, 13, 16, 19, 22

Die Komplexe *cis*-Mo(CO)₄($R_{3-n}PX_n$)₂ (R = Me, tBu; X = H, F, Cl; n = 1, 2) wurden mit Ausnahme von Mo(CO)₄(Me_2PF)₂ (13) durch Umsetzung von Tetracarbonyl(norbornadien)molybdän(0) mit den entsprechenden Liganden $R_{3-n}PX_n$ dargestellt. Dieses Verfahren führte im Falle des Di-*tert*-butylchlorphosphins nicht zum gewünschten *cis*-Disubstitutionsprodukt, *cis*-Mo(CO)₄(Hu_2PCl)₂. Aus dem Reaktionsgemisch kann Pentacarbonyl(di-*tert*-butylchlorphosphin)molybdän(0) isoliert werden. Daß diese Reaktion im Falle von tBu₂PF und tBu₂PH noch zu Komplexen *cis*-Mo(CO)₄(Hu_2PX)₂ (6, 4) führt, ist wohl auf die geringere sterische Hinderung der *cis*-ständigen Liganden zurückzuführen.

Die direkte Synthese aus Hexacarbonylmolybdän(0) und Di-*tert*-butylchlorphosphin im Molverhältnis 1:2 führt dementsprechend auch trotz langer Reaktionszeit und hoher Reaktionstemperatur nur zum Monosubstitutionsprodukt. 4 und 6 sind in verdünnten Lösungen nicht stabil und zersetzen sich nach kurzer Zeit unter Abscheidung eines Niederschlags. Der Zerfall von 6 liefert neben unlöslichen Produkten das Monosubstitutionsprodukt Mo(CO)₅tBu₂PF¹⁶, das anhand seiner Banden im CO-Valenzschwingungsbereich (2076 m, 1991 m, 1960 st und 1952 st) nachgewiesen werden konnte.

Der Komplex 13 konnte durch Chlor-Fluor-Austausch am cis-Mo(CO)₄(Me₂PCl)₂ (12) mit Natriumfluorid in Acetonitril zu 27% erhalten werden.

Infrarotspektroskopische Untersuchungen im CO-Valenzschwingungsbereich

In Tab. 1 sind die CO-Valenzschwingungsfrequenzen der Komplexe 1-25 und die nach einem von *Delbeke*, *Claeys*, *De Caluwe* und *Van der Kelen*¹⁷¹ vorgeschlagenen Verfahren (Methode A) berechneten Kraftkonstanten k_1 , k_2 , k_c , k'_c und k_t zusammengefaßt. Bei der überwiegenden Zahl der aufgeführten Komplexe gibt es zwei Zuordnungsmöglichkeiten der CO-Valenzschwingungen, die beide die Sequenz $k_2 > k_1 > k_c > k'_c$ für die Kraftkonstanten ergeben. Die Beziehung $k_t > k_c > k'_c$ wurde von Kaesz et al.¹⁸ durch die Isotopensubstitutionsmethode bestätigt.

Aufgrund der hier vorliegenden Ergebnisse ist es nicht möglich, eine Entscheidung zugunsten einer Zuordnung zu treffen. Beide ergeben jedoch in etwa die gleiche Reihenfolge für die Komplexe 1-25. Daher wird im folgenden nur der erste Satz von Kraftkonstanten (mit $A_1^1 > A_1^2 > B_2 > B_1$) diskutiert werden.

Trägt man $v(CO)A_1^1$ von 1–25 gegen die ersten vertikalen Ionisierungspotentiale der entsprechenden freien Liganden auf, so ergibt sich zunächst eine Vielzahl von Punkten, zwischen denen keine Beziehung zu existieren scheint. Es lassen sich jedoch bei näherer Inspektion der Wertepaare $v(CO)A_1^1$ /Ionisierungspotentiale einige interessante Feststellungen machen:

¹⁶⁾ O. Stelzer und R. Schmutzler, J. Chem. Soc. A 1971, 2867.

¹⁷⁾ F. T. Delbeke, E. G. Claeys, R. W. DeCaluwe und G. P. Van der Kelen, J. Organomet. Chem. 23, 505 (1970); F. T. Delbeke, E. G. Claeys und G. P. Van der Kelen, ebenda 25, 219 (1970); F. T. Delbeke, E. G. Claeys, G. P. Van der Kelen und Z. Eeckhaut, ebenda 25, 213 (1970).

¹⁸⁾ H. D. Kaesz, R. Bau, D. Hendrickson und J. M. Smith, J. Amer. Chem. Soc. 89, 2844 (1967).

Ξ
Ľ
)
5
Ŏ
Σ
cis
ě
je,
ď
<u></u>
Ä
de
(Y
/ u /
ð
8
Ē
en
Ĭ
sta
u0
ſţķ
ra
¥
Pu
, united and a construction of the second se
ĩ
- E
Е,
n.
Jze
ler
ğ
Ľ,
ŝ
I.
Ĩ,
Ň
sch
ΣU
ale
>
Ò
0
at

1975				σ	-D	ona	ato	r- u	inc	π-	Ac	cep	oto	rei	gen	scl	naf	ten	vo	n F	Pho	sph	inli	gan	der	1				124	19
Lit.	C	g)		(H				g)		(i		k)					(i					=							(i		ÎC
Lösungs- mittel	(B	(q		(4		c)		q		()		c)	c)		()		(p		c)		0		ī	5	c)		c)	c)	(p		5 5
k,	0.66	0.70	0.76	0.72	0.77	0.69	0.72	0.73	0.81	0.70	0.74	0.72	0.67	0.69	0.71	0.73	0.68	0.72	0.68	0.69		0.65	0.08	0.08	0.66	0.68	0.65	0.55	0.67	0.09	0.69
k	0.50	0.48	0.42	0.43	0.37	0.39	0.36	0.49	0.41	0.42	0.39	0.65	0.36	0.34	0.37	0.35	0.45	0.41	0.39	0.38		0.40	00	0.36	0.38	0.36	0.36	0.38	0.40	66.0	0.37
k' _c	0.33	0.35	0.38	0.36	0.39	0.35	0.36	0.37	0.40	0.35	0.37	0.36	0.34	0.35	0.36	0.37	0.34	0.36	0.34	0.34		0.32	0.34 0.24	0.34 0.34	0.33	0.34	0.32	0.28	0.34	CC.U	0.35
k2 axial	15.48	15.21	15.01	15.21	15.05	15.28	15.20	15.26	14.99	15.34	15.22	15.32	15.44	15.38	15.48	15.42	15.43	15.29	15.45	15.41		15.57	0 1 .01	cc.cl	15.59	15.53	15.70	15.90	15.66	00.01	15.66 15.72
k ₁ radial	13.31	14.73	14.93	14.71	14.87	14.87	14.95	14.68	14.93	14.90	15.02	14.92	15.05	15.11	15.06	15.12	15.02	15.16	15.11	15.15		15.18	67.01	15.25	15.23	15.29	15.41	15.43	15.31	15.01	15.16 1531
B1	1780	1878	1895	1880	1894	1893	1900	1874	1896	1893	1903	1879	1907	1912	1907	1912	1899	1911	1909	1912	1909	1913	7761	1913 1920	1917	1922	1930	1930	1921	0761	1897 1923
$\mathbf{B_2}$	1915	1895	1878	1894	1880	1900	1893	1896	1874	1903	1893	1901	1912	1907	1912	1907	1911	1899	1912	1909	1912	1922	6161	1913	1922	1917	1930	1949	1926	1761	1925 1932
A_1^2	1837	1912	1912	1908	1908	1916	1916	1910	1910	1920	1920	1930	1927	1927	1927	1927	1929	1929	1931	1931	1931	1938	1938	1936 1936	1939	1939	1949	1958	1945	1945	1947 1946
\mathbf{A}_1^1	2010	2011	2011	2012	2012	2014	2014	2016	2016	2019	2019	2024	2022	2022	2028	2028	2023	2023	2024	2024	2024	2028	8707	2028	2031	2031	2037	2037	2037	203/	2040 2036
Ligand L	NH,	PhMe.P	1701111 1	(Me ₂ N) ₃ P) 1	tBu ₂ PH		Me ₃ P					tBu ₂ PF*				Ph_3P		Me ₂ PH		Me ₂ PD	Ph2PH		1BuPH ₂	MePH,	•	Me ₂ PCI	Me ₂ PF	(MeO) ₃ P		PH3
Nr.	-	2	١	ę		4		ŝ					9				7		œ		8 a	6	ŝ	2	11		12	13	14	;	12

(Fortsetzung)
Τ
Tab.

						(G						
Nr.	Ligand L	٩¦	A_1^2	\mathbf{B}_2	B	k ₁ radial	k2 axial	k'e	k	k,	Lösungs- mittel	Lit.
16	tBuPCl ₂	2049	1979	1950	1940	15.75	15.93	0.28	0.55	0.56	6)	
17	tBuPF ₂	2053	1980	1957	1951	15.82	16.04	0.28	0.0 4.0	0.57	c)	
	:	5002	0861	1661	1041	06.61	06.01	67.0	0.42	0.38		
18	Ät ₂ NPF ₂	2055	1974	1950	1942	15.72	15.99	0.31	0.48	0.63	6	5
ç		202	19/4	1942	0061	20.01	40.CI	70.0	0.40	C0.0	6	
61	MePCI ₂	2056	1661	9691	9691	16.02	16.04	0.27	16.0	5C. 0	5	
20	PhPC12	2054	1985	1963	1963	15.95	16.11	0.27	0.38	0.54	c)	0
21	Me ₂ NPF ₂	2057	1978	1953	1945	15.77	16.03	0.31	0.49	0.62	c)	d
		2057	1978	1945	1953	15.88	15.92	0.32	0.47	0.64		
22	MePF ₂	2065	1990	1963	1957	15.97	16.17	0.30	0.50	09.0	c)	
		2065	1990	1957	1963	16.05	16.08	0.31	0.48	0.61		
23	PCI ₃	2072	2004	1986	1944	16.33	16.46	0.26	0.26	0.52	(p	ā
		2072	2004	1944	1986	16.23	16.56	0.25	0.29	0.49		
24	CCI ₃ PF ₂	2079	2015	2010	1990	16.33	16.77	0.22	0.33	0.45	c)	(u
		2079	2015	1990	2010	15.58	16.52	0.26	0.25	0.52		
25	\mathbf{PF}_3	2091	2022	2022	2003	16.48	16.98	0.23	0.27	0.46	Gas	6
 Nujol. Nujol. D. Chlorol D. Haxa B. Scittig Cyclohi C. G. B. M. J. R. Poilt N. J. M. J. 	lorm. n. r. xan. <i>arlow</i> und G. C. H <i>arlow</i> und G. C. H <i>enkins</i> , J. R. Moss <i>pilvic</i> , R. L. Keiter <i>filva</i> c und M. Bigo <i>arkins</i> und J. G. V.	stoff. stoff. of ywell, J. C und B. L. S Gne, Bull. S erkade, Inor	Jrganomet. <i>haw</i> , J. Chen <i>rg</i> und J. G. oc. Chim. F g. Chem. 6,	Chem. 16 , 4: n. Soc. A 19 <i>Verkade</i> , In rance 1962 ,	39 (1969). 69, 2796. 1301.	8, 2346 (196						

¹⁾ J. G. Smith und D. T. Thompson, J. Chem. Soc. A 1967, 1694.

^{a)} E. O. Fischer, L. Louis, W. Bathelt, E. Moser und J. Willer, J. Organomet. Chem. 14, P9 (1968).
^{a)} C. G. Barlow, J. F. Nixon und M. Webster, J. Chem. Soc. A 1968, 2216.
^{b)} F. Zingales, F. Canziani und F. Basolo, J. Organomet. Chem. 7, 461 (1967).
^{b)} C. G. Barlow, J. F. Nixon und J. R. Swain, J. Chem. Soc. A 1969, 1082.
* Die Bande A¹ ist aufgespalten.

1. Obwohl die ersten vertikalen Ionisierungspotentiale der freien Liganden in einigen Fällen (durch vertikale Geraden a, b und c in Abb. 1 angezeigt) innerhalb von etwa ± 0.1 eV übereinstimmen, treten in den v(CO)A₁ der entsprechenden Komplexverbindungen Unterschiede bis zu etwa 36 cm⁻¹ (PCl₃/PH₃) auf.

2. Eine größere Zahl von Punkten läßt sich durch Geraden so miteinander verbinden, daß das Punktefeld in etwa drei Kategorien eingeteilt wird. Komplexe der Liganden tBu₂PH, Me₃P, Me₂PH, tBuPH₂, MePH₂, PH₃, Me₂PhP (Gerade I), tBu₂PF, Me₂PCl, Me₂PF, (MeO)₃P, Me₂NPF₂, Ät₂NPF₂ (Gerade II), (Me₂N)₃P, Ph₂PH, Ph₃P, tBuPCl₂, tBuPF₂, PhPCl₂, MePCl₂, MePF₂, PCl₃, PF₃ (Gerade III) liegen jeweils auf einer Geraden mit Abweichungen in der Größenordnung der Meßgenauigkeit der Ionisierungspotentiale und v(CO)A₁.

3. Die Geraden 1, 2 und 3 verbinden Komplexe mit nahezu $(\pm 3 \text{ cm}^{-1})$ gleichen v(CO)A₁-Valenzschwingungsfrequenzen, jedoch mit bis zu 1.3 eV unterschiedlichen Werten für das erste vertikale Ionisierungspotential der entsprechenden freien Liganden.

Abb. 1. Abhängigkeit der $v(CO)A_1^1$ -Valenzschwingungsfrequenzen der Komplexe cis-Mo(CO)₄(R_{3-n}PX_n)₂ (1-25) vom ersten vertikalen Ionisierungspotential der Liganden R_{3-n}PX_n; $\Delta \pi$ -Werte in Klammern. \blacktriangle für cis-Mo(CO)₄(tBu₃P)₂ extrapolierter Wert (erstes vertikales Ionisierungspotential von tBu₃P = 7.70 eV)

Die graphische Darstellung der CO-Valenzschwingungskraftkonstanten k_1 bzw. k_2 gegen die ersten vertikalen Ionisierungspotentiale der freien Liganden (Abb. 2 bzw. 3) weist prinzipiell die gleichen Züge wie Abb. 1 auf. Komplexe von Liganden mit fast übereinstimmendem erstem vertikalem Ionisierungspotential zeigen bis zu etwa 1 mdyn/Å verschiedene k_1 -Werte (PCl₃/PH₃).

Auf der Basis der Arbeitshypothese – erstes vertikales Ionisierungspotential ist ein Maß für die σ -Donatorfähigkeit – lassen sich alle diese Beobachtungen zwanglos erklären, wenn Phosphinliganden der Gruppe I, II und III für jeweils gleiche erste vertikale Ionisierungspotentiale (und damit gleichen σ -Donatorvermögen) unterschiedliches π -Acceptorvermögen zugeschrieben wird. Da Bindungswinkel und Elektronegativitätssumme der Substituenten am Phosphoratom der Liganden innerhalb einer Kategorie (Geraden I, II oder III in Abb. 1) stark variieren, wird natürlich auch deren π -Acceptorvermögen nicht konstant sein. Baybutt, Guest und Hillier¹⁹⁾ fanden für die freien Liganden PX₃ eine in der Reihenfolge PMe₃ < PH₃ < PCl₃ < PF₃ zunehmende INDO-Ladung am Phosphor, die in etwa linear zu den ersten vertikalen Ionisierungspotentialen korreliert. Die Größe dieser Ladungen am Phosphor wird natürlich auch die Energie der 3d-Orbitale und damit die π -Acceptorfähigkeit des Phosphinliganden im Komplex beeinflussen.

Abb. 2. Abhängigkeit der Kraftkonstanten k_1 der Verbindungen 1–25 vom ersten vertikalen Ionisierungspotential der Liganden $R_{3-n}PX_n$

Für die im Rahmen dieser Arbeit untersuchten Dialkylaminophosphorverbindungen $\ddot{A}t_2NPF_2$, Me_2NPF_2 und $(Me_2N)_3P$ kann die Arbeitshypothese in der oben ausgedrückten Form nicht verwendet werden. Anstelle des ersten vertikalen Ionisierungspotentials ist in diesen Fällen die Ionisierungsenergie des P(3p)-Elektronenpaars, also des Donatororbitals, zu setzen. Den niedrigen CO-Valenzschwingungsfrequenzen und -kraftkonstanten von Tris(dimethylamino)phosphin (3) steht damit jedoch das relativ hohe Ionisierungspotential von 9.80 eV (bzw. 9.98 eV) für das P-Donatororbital (Symmetrie a_1) von 3 gegenüber. Die dative ($p \rightarrow d$) π -Wechselwirkung in der P – N-Bindung von 3 sollte durch den Transport negativer Ladungsdichte an das P-Atom zur Herabsetzung des π -Acceptorcharakters des Liganden (Me₂N)₃P führen. Damit ließen sich die niedrigen CO-Valenzschwingungsfrequenzen und -kraftkonstanten von 3 befriedigend erklären.

Die infrarot-spektroskopischen Daten von 3 lassen sich jedoch auch plausibel interpretieren, wenn dem Donatororbital die Ionisierungsenergie von 7.30 bzw. 7.61 eV

¹⁹⁾ P. Baybutt, M. F. Guest und I. H. Hillier, Mol. Phys. 25, 1025 (1973).

(erstes vertikales Ionisierungspotential) zugeordnet wird (siehe Abb. 1). Dieser Bande im Photoelektronenspektrum entspricht ebenfalls ein Orbital der Symmetrie a_1 (beide a_1 -Orbitale entstehen durch Wechselwirkung der a_1 -Kombination der drei N(2p)-Elektronenpaare mit dem P(3p)-Elektronenpaar⁸). Die letztgenannte Erklärung erlaubt eine zwanglose Einordnung von (Me₂N)₃P in die auf photoelektronen- und infrarotspektroskopischen Untersuchungen fußende Systematik der Liganden $R_{3-n}PX_n$.

Abb. 3. Abhängigkeit der Kraftkonstanten k_2 der Verbindungen 1–25 vom ersten vertikalen Ionisierungspotential der Liganden $R_{3-n}PX_n$

Dobson et al.²⁰⁾ schlugen, in Ausdehnung der Grahamschen Arbeiten, ein Gleichungssystem zur Separierung von σ - und π -Bindungseffekten in Komplexen cis-Mo(CO)₄L₂ vor: $\Delta k_1 = \Delta d + 3\Delta \pi$

$$\Delta k_2 = 2\Delta d + 2\Delta \pi$$

Dabei sind Δk_1 und Δk_2 die Differenzen der entsprechenden Kraftkonstanten eines bestimmten Komplexes und denen eines willkürlich gewählten Standardkomplexes [in unserem Falle *cis*-Mo(CO)₄(NH₃)₂]. Δd repräsentiert den Einfluß der "direkten Ligand-Wechselwirkung mit den σ^* -Orbitalen der benachbarten CO-Gruppen oder ähnliche anisotrope Effekte", $\Delta \pi$ ist identisch mit dem *Graham*schen π -Parameter⁵).

Bei aller berechtigten Kritik an diesem Verfahren (Gleichungen aufgrund einer grob vereinfachten MO-Beschreibung abgeleitet, Unsicherheit in der Bandenzuordnung, Kraftkonstanten nach Näherungsverfahren erhalten, Fehler in Δd und $\Delta \pi$ sind relativ groß im Vergleich zur Variationsbreite von Δd und $\Delta \pi$) sind die hierbei erhaltenen Informationen von einigem Interesse für den Vergleich mit den aus der Gegenüberstellung von v(CO)A¹ bzw. $k_{1/2}$ und erstem vertikalem Ionisierungspotential gewonnenen Ergebnissen. Die für die Verbindungen 1–25 errechneten Δd - und $\Delta \pi$ -Werte sind in Tab. 2

1253

²⁰⁾ R. T. Jernigan, R. A. Brown und G. R. Dobson, J. Coord. Chem. 2, 47 (1972).

zusammengefaßt und die $\Delta\pi$ -Werte in Abb. 1 eingetragen (es wurden der Übersichtlichkeit halber die $\Delta \pi$ -Werte jeweils nur einer Zuordnung aufgenommen).

Tab. 2. 🛛	Δπ-, Δd	-Parame	eter in	mdyı	n/Å, Su	bstituentenkonstante	n x _i	in	cm ⁻	¹ der K	omp	lexe
cis-Mo(C	O_4L_2	(1 – 25)	und e	erste v	ertikale	Ionisierungspotentia	ile d	er f	reien	Ligande	n in	eV

Nr.	Ligand L	Δ	π		∆d	×i	erstes vert. Ionisier potential	Lit.
1	NH ₃	0		0				
2	PhMe₂P	0.78	0.93	0.91	1.17		8.31	c)
3	(Me ₂ N) ₃ P	0.77	0.89	0.90	1.10	2.3	7.30, 7.95 8.60, 9.80 7.61 7.89	8)
							8.86, 9.98	ц)
4	tBu₂PH	0.83	0.89	0.93	1.03		8.35	8)
5	Me ₃ P	0.74 0.83 0.85	0.93 0.92	0.85 0.91 0.93	1.18 1.00	4.2 ^{a)}	8.65 8.65, 8.60 8.65, 8.60	8) 8,9) 8,9)
6	t B u ₂ PF	0.88 0.88	0.93 0.92	0.90 0.88	0.98 0.95		8.50 8.50	8) 8)
7	Ph₃P	0.87	0.97	0.89	1.07	6.0	7.88	C)
8	Me₂PH	0.91	0.94	0.93	0.97		9.10	8)
9	Ph₂PH	0.91	0.96	0.87	0.97		8.29	c)
10	tBuPH ₂	0.91	0.96	0.88	0.98		9.30	8)
11	MePH ₂	0.93	0.98	0.87	0.95		9.70	8)
12	Me ₂ PCl	1.00		0.89			9.20	8)
13	Me₂PF	0.96		0.75			9.35	8)
14	(MeO) ₃ P	0.96	1.00	0.87	0.94	10.7	9.25	e)
15	PH ₃	0.88 0.94		0.79 0.82		11.0 ^{b)}	10.58 10.58	() f)
16	tBuPCl ₂	1.11		0.88			9.30	8)
17	tBuPF ₂	1.12	1.17	0.84	0.93		9.65	8)
18	Ät2NPF2	1.07	1.15	0.82	0.95		9.45, 10.25	8)
19	MePCl ₂	1.22		0.94			9.85	8)
20	PhPCl ₂	1.16		0.85			9.63	c)
21	Me ₂ NPF ₂	1.09	1.18	0.82	0.96		9.60, 10.50 9.58, 10.48	8) d)
22	MePF ₂	1.16	1.22	0.81	0.92		10.35	8)
23	PCl ₃	1.19	1.27	0.65	0.78	22.3	10.70	g)
24	CCl ₃ PF ₂	1.19	1.09	0.54	0.36		10.65	8)
25	PF ₃	1.21		0.46		28.7	12.30 12.23	12) h)

^{a)} Mittelwert aus den Frequenzangaben von Lit.^{g)} und ⁱ⁾ in Tab. 1.

^{b)} Mittelwert aus den Frequenzangaben von Lit.^{m)} und ^{f)} aus Tab. 1.

^{c)} T. P. Debies und J. W. Rabalais, Inorg. Chem. 13, 308 (1974).

^{d)} A. H. Cowley, M. J. S. Dewar, D. W. Goodman und J. R. Schweiger, J. Amer. Chem. Soc. 95, 6506 (1973). ^{e)} D. Betteridge, M. Thompson, A. D. Baker und N. R. Kemp, Anal. Chem. 44, 2005 (1972). ⁽¹⁾ D. Betteridge, M. Thompson, A. D. Baker und N. R. Kemp, Anal. Chem. 44, 2005 (1972).

⁸⁾ A. W. Potts, H. J. Lemka, D. G. Streets und W. C. Price, Phil. Trans. A 268, 59 (1970); P. J. Bassett und D. R. Lloyd, J. C. S. Dalton 1972, 248.

h) S. Cradock und D. W. Rankin, J. C. S. Faraday II 1972, 940.

Liganden auf verschiedenen Geraden (I, II, III) mit etwa gleichen ersten vertikalen Ionisierungspotentialen weisen zum Teil stark unterschiedliche $\Delta \pi$ -Werte auf (Geraden a, b und c in Abb. 1). $\Delta \pi$ ist längs der Geraden I, II, III nicht konstant; es steigt mit dem ersten vertikalen Ionisierungspotential, wobei seine Gesamtvariationsbreite deutlich größer als der mittlere Fehler $\Delta(\Delta \pi)$ ist.

 Δd nimmt, wie Tab. 2 zeigt, innerhalb einer Gruppe von Liganden mit wachsendem erstem vertikalem Ionisierungspotential irregulär ab. Eine allgemeine Korrelation zwischen diesen beiden Größen existiert nicht.

Die (CO)A¹-Valenzschwingungsfrequenzen der Verbindungen 1-25 lassen sich mit Hilfe von Substituentenkonstanten x_i durch die Beziehung

$$v(CO)A_1^1 = 2005 + \sum_{i=1}^3 \kappa_i$$

berechnen. Dabei ist 2005 der für das Ionisierungspotential von tBu₃P (=7.70 eV) extrapolierte Wert der v(CO)A₁ von Mo(CO)₄(tBu₃P)₂. Der mittlere Fehler der berechneten Frequenzen v(CO)A₁¹ beträgt 2.5 cm⁻¹. Eine analoge Beziehung wurde von *Tolman*²¹⁾ für Komplexe Ni(CO)₂PX₁X₂X₃ (X_{1/2/3} = gleiche oder verschiedene Substituenten) angegeben. Die von ihm gefundenen Substituentenparameter korrelieren befriedigend mit den von *Kabachnik*²²⁾ aus Dissoziationskonstanten von Phosphonsäuren abgeleiteten σ -Parametern. Die Substituentenparameter x_i korrelieren nicht uniform mit den ersten vertikalen Ionisierungspotentialen der Liganden R₃P bzw. PX₃. So zeigen die Paare PH₃/PCl₃ bzw. Ph₃P/tBu₃P bei jeweils nahezu gleichen ersten vertikalen Ionisierungspotentialen sehr unterschiedliche x_i-Werte. x_i setzt sich offensichtlich aus zwei Anteilen x_i^a und x_i^a zusammen, die die Beeinflussung des σ -Donator- bzw. π -Acceptorvermögens des Liganden durch den Substituenten i repräsentieren.

Herrn Prof. R. Schmutzler danken wir für sein Interesse an dieser Arbeit, der Deutschen Forschungsgemeinschaft für die Gewährung einer Sachbeihilfe. Den Farbenfabriken Bayer AG, der Badischen Anilin-& Soda-Fabrik AG und der Knapsack AG sowie den Chemischen Werken Hüls AG sei für die Überlassung von speziellen Chemikalien gedankt. Herrn Prof. G. P. Van der Kelen, Universität Gent, Belgien, danken wir für die Überlassung eines Computerprogramms, Herr Prof. M. F. Lappert, Brighton, machte uns die Ionisierungspotentiale einer Reihe von Phosphinliganden zugänglich. Diese Arbeit wurde von der Stiftung Volkswagenwerk unterstützt.

Experimenteller Teil

Über experimentelle Details der photoelektronenspektroskopischen Untersuchungen wird an anderer Stelle⁸⁾ berichtet.

Die massenspektroskopisch bestimmten Mol.-Massen sind auf ⁹⁸Mo bezogen.

Die Infrarotspektren der Verbindungen 4, 6, 8, 8a, 10, 11, 12, 13, 16, 17, 19, 22 und Pentacarbonyl-(di-*tert*-butylchlorphosphin)molybdän(0) wurden im Bereich von $2200-1900 \text{ cm}^{-1}$ in KBr-Küvetten (Schichtdicke 0.1 mm) mit den Infrarotspektralphotometern IR 20A bzw. IR 11/12 der Fa. Beckman aufgenommen. Zur Eichung wurden oberhalb von 2000 cm⁻¹ die Rotationsschwingungsbanden des Kohlenmonoxids, unterhalb 2000 cm⁻¹ die des Wassers (Atmosphäre) verwendet.

²¹⁾ C. A. Tolman, J. Amer. Chem. Soc. 92, 2953 (1970).

²²⁾ M. I. Kabachnik, Dokl. Akad. Nauk SSSR 110, 393 (1956) [C. A. 51, 5513c (1957)].

Es wurden jeweils drei Messungen durchgeführt und gemittelt. Der mittlere Fehler der Frequenzangaben beträgt $\pm 2 \text{ cm}^{-1}$. Infrarotspektren im Bereich von 4000 bis 200 cm⁻¹ wurden als Nujolverreibungen zwischen CsJ-Platten am Beckman IR 11 Spektralphotometer vermessen.

Alle Umsetzungen wurden entweder unter Inertgasschutz oder im Hochvakuum durchgeführt. Eingesetzte Lösungsmittel wurden nach Standardverfahren gereinigt und getrocknet.

Die Phosphine MePH₂²³, tBuPH₂²⁴, tBu₂PH²⁵, Me₂PH²⁶, tBuPCl₂²⁷, tBu₂PCl²⁷, tBu₂PF²⁸) und tBuPF₂²⁸, Tetracarbonyl(norbornadien)molybdän(0)²⁹) sowie die Komplexe 6 und 17¹⁶) wurden nach den in der Literatur beschriebenen Verfahren dargestellt. Chlor-Fluor-Austausch am MePCl₂ mit käuflichem Natriumfluorid (Merck AG Darmstadt) anstelle des sog. "aktiven Kaliumfluorids⁴³⁰ in einem Fließbettreaktor ergab Difluormethylphosphin in guten Ausbeuten. Dieser langwierigen Darstellung ist das Verfahren von *Drozd* et al.³¹ vorzuziehen, das es gestattet, aus Tetrafluormethylphosphoran freies Difluormethylphosphin in kurzer Zcit und größerer Menge (20-30 g) herzustellen.

Nr.	Ligand (0.025 mol)	Reaktie Temp. (°C)	ons- Dauer (h)	Ausb.	Physikalische Eigenschaften
4	3.65 g tBu ₂ PH	20	3	4.3 g (86 %)	farblose Kristalle, sublimierbar
8	1.6 g Me₂PH	- 40	1	3.3 g (100 %)	farblose Kristalle
8a	1.6 g Me2PD	- 40	1	3.3 g (100 %)	farblose Nadeln
10	2.3 g tBuPH₂	20	18	0.4 g (10 %)	hellbraune Plättchen
11	1.2 g MePH2	- 40	1	2.4 g (79 %)	rotbraune, leichtbewegliche Flüssigkeit
12	2.4 g Me₂PCI	20	18	2.7 g (66 %)	gelbe, wachsartige kristalline Masse, sublimierbar
16	4.0 g tBuPCl ₂	20	24	0.8 g (15 %)	farblose Kristalle
19	2.9 g MePCl ₂	20	18	2.2 g (50 %)	gelbe, wachsartige kristalline Masse, sublimierbar
22	2.1 g MePF ₂ ^{a)}	- 70 bis - 40) 1		ölige, gelbe Flüssigkeit

Tab. 3. Ansätze, Ausbeuten, physikalische Eigenschaften der Verbindungen 4, 8, 8a, 10, 11, 12, 16, 19, 22

^{a)} Im Vakuum aufkondensiert bei -78°C (Methanol/Trockeneis).

- ²⁵⁾ H. Hoffmann und P. Schellenbeck, Chem. Ber. 99, 1134 (1966).
- ²⁶⁾ G. W. Parshall, Inorg. Syn. 11, 157 (1968).
- ²⁷⁾ M. Fild, O. Stelzer und R. Schmutzler, Inorg. Syn. 14, 4 (1973).
- ²⁸⁾ M. Fild und R. Schmutzler, J. Chem. Soc. A 1970, 2359.
- ²⁹⁾ R. Pettit, J. Amer. Chem. Soc. 81, 1266 (1959).
- ³⁰⁾ F. Seel, K. Rudolph und R. Budenz, Z. Anorg. Allg. Chem. 341, 196 (1965).

²³⁾ L. J. Malone und R. W. Parry, Inorg. Chem. 6, 177 (1967).

²⁴⁾ H. Hoffmann und P. Schellenbeck, Chem. Ber. 99, 1320 (1966).

³¹⁾ G. I. Drozd, S. Z. Ivin, V. V. Sheluchenko und B. I. Tetelbaum, Zh. Obshch. Khim. **37**, 985 (1967) [C. A. **68**, 39735x (1968)]; G. I. Drozd, S. Z. Ivin, V. V. Sheluchenko, B. I. Tetelbaum, G. M. Luganski und A. D. Varshavskii, Zh. Obshch. Khim. **37**, 1631 (1967) [C. A. **68**, 78358 w (1968)].

Allgemeine Arbeitsvorschrift zur Synthese der Komplexe 4, 8, 8a, 10, 11, 12, 16, 19, 22: Jeweils 3 g (0.01 mol) Tetracarbonyl(norbornadien)molybdän(0) wurden in 10-20 ml n-Hexan gelöst und 0.025 mol des jeweiligen Liganden entweder mit einer Spritze zugegeben oder i. Vak. aufkondensiert. Nach den angegebenen Reaktionszeiten (siehe Tab. 3) wurde das Lösungsmittel i. Vak. abgezogen und der Rückstand durch Umkristallisation (8, 8a). Sublimation bzw. Hochvakuumdestillation (11, 12, 19, 22) und Dünnschichtchromatographie auf Kieselgelplatten PSC mit Fluoreszenzindikator F_{254} der Fa. Merck (4, 10, 16) gereinigt. Ansätze, Ausbeuten und physikalische Eigenschaften der Komplexe siehe Tab. 3.

Tetracarbonyl-cis-bis(di-tert-butylphosphin)molybdän(0) (4)

 $C_{20}H_{38}MoO_4P_2$ (500.4) Ber. C 48.0 H 7.6 P 12.4 Gef. C 48.4 H 7.8 P 11.7 Mol.-Masse 502

Tetracarbonyl-cis-bis(dimethylphosphin)molybdän(0) (8)

 $C_8H_{14}MoO_4P_2$ (332.1) Ber. C 28.9 H 4.2 P 18.7 Gef. C 28.7 H 3.8 P 18.7 Mol.-Masse 334

Tetracarbonyl-cis-bis(dimethyldeuteriophosphin)molybdän(0) (8a)

Tetracarbonyl-cis-bis(tert-butylphosphin)molybdän(0) (10)

 $C_{12}H_{22}MoO_4P_2$ (388.2) Ber. C 37.2 H 5.7 P 15.9 Gef. C 38.1 H 5.6 P 13.8 Mol.-Masse 390

Tetracarbonyl-cis-bis(methylphosphin)molybdän(0) (11)

C₆H₁₀MoO₄P₂ (304.0) Ber. C 23.7 H 3.3 Gef. C 24.4 H 2.9

Tetracarbonyl-cis-bis(chlordimethylphosphin)molybdän(0) (12)

 $C_8H_{12}Cl_2MoO_4P_2$ (401.0) Ber. C 23.9 H 3.0 Cl 17.7 P 15.5 Gef. C 23.9 H 2.9 Cl 17.6 P 15.4 Mol.-Masse 403

Tetracarbonyl-cis-bis(tert-butyldichlorphosphin)molybdän(0) (16)

 $C_{12}H_{18}Cl_4MoO_4P_2$ (526.0) Ber. C 27.3 H 3.4 Cl 27.0 P 11.8 Gef. C 27.4 H 3.4 Cl 27.0 P 12.7 Mol.-Masse 528

Tetracarbonyl-cis-bis(dichlormethylphosphin)molybdän(0) (19)

 $C_6H_6Cl_4MoO_4P_2$ (441.8) Ber. C 16.3 H 1.4 Cl 32.1 P 14.0 Gef. C 16.3 H 1.3 Cl 32.0 P 13.7 Mol.-Masse 444

Tetracarbonyl-cis-bis(difluormethylphosphin)molybdän(0) (22)

 $C_6H_6F_4MoO_4P_2$ (375.9) Ber. C 19.2 H 1.6 F 20.2 P 16.5 Gef. C 19.2 H 1.6 F 20.4 P 16.6 Mol.-Masse 378

Tetracarbonyl-cis-bis (fluordimethylphosphin)molybdän(0) (13) durch Chlor-Fluor-Austausch: 6.0 g (0.015 mol) 12 wurden mit 4.2 g (0.1 mol) Natriumfluorid in 20 ml Acetonitril bei 80°C etwa 20 h unter Rückfluß erhitzt. Anschließend wurde die Reaktionslösung zentrifugiert und vom Bodenkörper (NaF und NaCl) dekantiert. Nach Abziehen des Lösungsmittels erhielt man ein Öl, das sich bei 10^{-2} Torr/120-160°C Badtemp. unter teilweiser Zersetzung destillieren ließ. Ausb. 1.5 g (27%).

C₈H₁₂F₂MoO₄P₂ (368.1) Ber. C 26.1 H 3.3 Gef. C 26.4 H 3.6 Mol.-Masse 370

 $Penta carbonyl (di-tert-butyl chlor phosphin) molybdän (0), \ Mo(CO)_5 (tBu_2PCl)$

a) Beim Versuch der Darstellung von cis- $Mo(CO)_4(tBu_2PCl)_2$: 3 g (0.01 mol) Tetracarbonyl-(norbornadien)molybdän(0) wurden mit 4.5 g (0.025 mol) Di-tert-butylchlorphosphin in 15 ml n-Hexan umgesetzt. Man erhielt eine dunkelgefärbte Lösung, aus der sich langsam ein dunkelbrauner Niederschlag abschied. Nach Filtration ließen sich aus der Reaktionsmischung durch Abkühlen auf -78 °C 4 g weißlichgelbe Kristalle isolieren, die anhand ihrer IR- und Massenspektren sowie analytischer Daten als $Mo(CO)_5(tBu_2PCl)$ identifiziert wurden. – IR (Hexan): 2076 m, 1991 m, 1958 st, 1949 cm⁻¹ st.

C₁₃H₁₈ClMoO₅P (416.5) Ber. C 37.5 H 4.3 Cl 8.5 P 7.4 Gef. C 37.8 H 4.4 Cl 8.6 P 8.0 Mol.-Masse 423 (kryoskop. in Benzol), 418 (massenspektroskop.)

b) Aus Hexacarbonylmolybdän(0): 2.64 g (10 mmol) $Mo(CO)_6$ wurden in 25 ml Methylcyclohexan aufgeschlämmt, 4.5 g (25 mmol) tBu_2PCl zugesetzt und 48 h unter Rückfluß erhitzt. Nach Abkühlen schieden sich farblose Kristalle ab, die abgesaugt und aus n-Hexan umkristallisiert wurden. Ausb. 3.3 g (ca. 80 %). Anhand der Infrarotspektren im Bercich 2100 – 1900 cm⁻¹ sowie Elementaranalyse und Massenspektrum wurde sie als Monosubstitutionsprodukt $Mo(CO)_5(tBu_2PCl)$ identifiziert.

[399/74]